skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wang, Xiaoqiang"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The electronic structure of heterointerfaces is a pivotal factor for their device functionality. We use soft x-ray angle-resolved photoelectron spectroscopy to directly measure the momentum-resolved electronic band structures on both sides of the Schottky heterointerface formed by epitaxial films of the superconducting NbN on semiconducting GaN, and determine their momentum-dependent interfacial band offset as well as the band-bending profile. We find, in particular, that the Fermi states in NbN are well separated in energy and momentum from the states in GaN, excluding any notable electronic cross-talk of the superconducting states in NbN to GaN. We support the experimental findings with first-principles calculations for bulk NbN and GaN. The Schottky barrier height obtained from photoemission is corroborated by electronic transport and optical measurements. The momentum-resolved understanding of electronic properties of interfaces elucidated in our work opens up new frontiers for the quantum materials where interfacial states play a defining role. 
    more » « less
  2. Angiotensin II Type 1 Receptor Autoantibodies (AT1-AA) as a functional receptor activator can persistently activate Angiotensin II Type 1 Receptor (AT 1 R) by causing AT 1 R non-desensitization which is one of the important pathogenesis of preeclampsia (PE). However, the molecular mechanisms of AT1-AA results AT 1 R non-desensitization remain unknown. In order to explore the background molecular mechanisms of AT 1 R non-desensitization induced by AT1-AA, we construct dynamical models which are composed of control model (based on the body of healthy pregnant women) and experimental group models (based on the body of pregnant women with PE) in this paper. We also consider the effect of membrane fluidity on the reaction when building the dynamical models. In the experiment group models, we establish two models that caused AT 1 R non-desensitization: endocytosis disorder model and conformational change model. We write C++ and MATLAB programs to do the data fitting. By comparing the data fitting results and analyzing the images of models and corresponding Bayesian information criterion (BIC) values, we conclude that conformational changes may be the key molecular mechanism of AT 1 R non-desensitization. 
    more » « less